On the Pierce–Birkhoff conjecture and related problems.

Mark Spivakovsky

Let R be a real closed field and $B = R[x_1, \ldots, x_n]$ a polynomial ring over R in n variables.

Definition 0.1. A function $g : \mathbb{R}^n \to \mathbb{R}$ is said to be **piecewise polynomial** if \mathbb{R}^n can be covered by a finite collection of closed semi-algebraic sets P_i , $i \in \{1, \ldots, s\}$ such that for each i there exists a polynomial $g_i \in B$ satisfying $g|_{P_i} = g_i|_{P_i}$.

Piecewise polynomial functions form a ring, containing B, which is denoted by PW(B).

Consider the ring (contained in PW(B)) of all the functions obtained from B by iterating the operations of sup and inf. The Pierce–Birkhoff conjecture was stated by M. Henriksen and J. Isbell in the early nineteen sixties ([1] and [3]):

Conjecture 1. (Pierce-Birkhoff) If $g : \mathbb{R}^n \to \mathbb{R}$ is in PW(B), then there exists a finite family of polynomials $g_{ij} \in B$ such that $f = \sup_i \inf_j (g_{ij})$ (in other words, for

all $x \in \mathbb{R}^n$, $f(x) = \sup_{i} \inf_{j}(g_{ij}(x)))$.

In this talk, we will recall the definition of the real spectrum of a ring Σ , denoted by Sper Σ . In the nineteen eighties, generalizing the problem from the polynomial ring to an arbitrary ring Σ , J. Madden proved that the Pierce–Birkhoff conjecture for Σ is equivalent to a statement about an arbitrary pair of points $\alpha, \beta \in$ Sper Σ and their separating ideal $\langle \alpha, \beta \rangle$; we refer to this statement as the **local Pierce-Birkhoff conjecture** at α, β . In [4] we introduced a stronger conjecture, also stated for a pair of points $\alpha, \beta \in$ Sper Σ and the separating ideal $\langle \alpha, \beta \rangle$, called the **Connectedness conjecture**, about a finite family of elements $f_1, \ldots, f_r \in \Sigma$. In [6] we introduced a new conjecture, called the **Strong Connectedness conjecture**, and proved that the Strong Connectedness conjecture in dimension n - 1 implies the strong connectedness conjecture in dimension n in the case when $ht(\langle \alpha, \beta \rangle) \leq n - 1$.

The Pierce-Birkhoff Conjecture for r = 2 is equivalent to the Connectedness Conjecture for r = 1; this conjecture is called the Separation Conjecture. The

Mark Spivakovsky

Strong Connectedness Conjecture for r = 1 is called the Strong Separation Conjecture. In this talk fix a polynomial $f \in R[x, z]$ where $x = (x_1, \ldots, x_n), z$ are n+1 independent variables. We will define the notion of two points $\alpha, \beta \in \text{Sper } R[x, z]$ being in **good position** with respect to f. Our main result is a proof of the Strong Separation Conjecture in the case when α and β are in good position with respect to f. We also prove that, given a connected semi-algebraic set $D \subset R^n$, if the number of real roots of f, counted with or without multiplicity, is constant for all $x \in D$ then these roots are represented by continuous semi-algebraic functions $\phi_j : D \to R$.

References

- G. Birkhoff and R. Pierce, Lattice-ordered rings. Annales Acad. Brasil Ciênc. 28, 41–69 (1956).
- [2] M. Henriksen and J. Isbell, On the continuity of the real roots of an algebraic equation, Proc. AMS Vol. 4, pp. 431-434, 1953.
- [3] M. Henriksen and J. Isbell, Lattice-ordered rings and function rings. Pacific J. Math. 11, 533–566 (1962).
- [4] F. Lucas, J.J. Madden, D. Schaub and M. Spivakovsky, On connectedness of sets in the real spectra of polynomial rings, Manuscripta Math. 128, 505-547, 2009.
- [5] F. Lucas, D. Schaub and M. Spivakovsky, Approximate roots of a valuation and the Pierce-Birkhoff Conjecture, Ann. Fac. Sci. Toulouse, Mathématique, Série 6, Vol. XXI, Fasc. 2, 259-342, 2012.
- [6] F. Lucas, D. Schaub and M. Spivakovsky, On the Pierce-Birkhoff Conjecture, Journal of Algebra 435, (2015), 124-158.
- [7] J. J. Madden, Pierce-Birkhoff rings. Arch. Math. 53, 565-570 (1989).

Mark Spivakovsky CNRS, Institut de Mathématiques de Toulouse 118, route de Narbonne, F-31062 Toulouse Cedex 9, France e-mail: mark.spivakovsky@gmail.com